The [organization] shall define processes and procedures to be followed when integrity verification tools detect unauthorized changes to software, firmware, and information.{SV-IT-2}{CM-3,CM-3(1),CM-3(5),CM-5(6),CM-6,CP-2,IR-6,IR-6(2),PM-30,SC-16(1),SC-51,SI-3,SI-4(7),SI-4(24),SI-7,SI-7(7),SI-7(10)}
|
|
The [organization] shall define policy and procedures to ensure that the developed or delivered systems do not embed unencrypted static authenticators in applications, access scripts, configuration files, nor store unencrypted static authenticators on function keys.{SV-AC-1,SV-AC-3}{IA-5(7)}
|
|
The [spacecraft] shall terminate the connection associated with a communications session at the end of the session or after 3 minutes of inactivity.{SV-AC-1}{AC-12,SA-8(18),SC-10,SC-23(1),SC-23(3),SI-14,SI-14(3)}
|
|
The [spacecraft] shall explicitly indicate when a communication session has been terminated.{AC-12(2)}
|
|
The [spacecraft] shall protect authenticator content from unauthorized disclosure and modification.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),IA-5,IA-5(6),RA-5(4),SA-8(18),SA-8(19),SC-28(3)}
|
|
The [spacecraft] encryption key handling shall be handled outside of the onboard software and protected using cryptography.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-8(19),SA-9(6),SC-8(1),SC-12,SC-28(1),SC-28(3)}
|
|
The [spacecraft] encryption keys shall be restricted so that the onboard software is not able to access the information for key readout.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-8(19),SA-9(6),SC-8(1),SC-12,SC-28(3)}
|
|
The [spacecraft] encryption keys shall be restricted so that they cannot be read via any telecommands.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-8(19),SA-9(6),SC-8(1),SC-12,SC-28(3)}
|
|
The [spacecraft] shall produce, control, and distribute symmetric cryptographic keys using NSA Certified or Approved key management technology and processes per CNSSP 12.{SV-AC-1,SV-AC-3}{AC-17(6),CM-3(6),SA-9(6),SC-12,SC-12(1),SC-12(2),SC-12(3)}
|
|
The [spacecraft] shall use [directional or beamforming] antennas in normal ops to reduce the likelihood that unintended receivers will be able to intercept signals.{SV-AV-1}{AC-18(5)}
|
|
The [spacecraft] shall provide the capability to restrict command lock based on geographic location of ground stations.{SV-AC-1}{AC-2(11),IA-10,SI-4(13),SI-4(25)}
|
This could be performed using command lockout based upon when the spacecraft is over selected regions. This should be configurable so that when conflicts arise, the Program can update. The goal is so the spacecraft won't accept a command when the spacecraft determines it is in a certain region.
|
The [spacecraft] shall restrict the use of information inputs to spacecraft and designated ground stations as defined in the applicable ICDs.{SV-AC-1,SV-AC-2}{AC-20,SC-23,SI-10,SI-10(5),SI-10(6)}
|
|
The [spacecraft] shall uniquely identify and authenticate the ground station and other spacecraft before establishing a remote connection.{SV-AC-1,SV-AC-2}{AC-3,AC-17,AC-17(10),AC-20,IA-3,IA-4,SA-8(18),SI-3(9)}
|
|
The [spacecraft] shall authenticate the ground station (and all commands) and other spacecraft before establishing remote connections using bidirectional authentication that is cryptographically based.{SV-AC-1,SV-AC-2}{AC-3,AC-17,AC-17(2),AC-17(10),AC-18(1),AC-20,IA-3(1),IA-4,IA-4(9),IA-7,IA-9,SA-8(18),SA-8(19),SA-9(2),SC-7(11),SC-16(1),SC-16(2),SC-16(3),SC-23(3),SI-3(9)}
|
Authorization can include embedding opcodes in command strings, using trusted authentication protocols, identifying proper link characteristics such as emitter location, expected range of receive power, expected modulation, data rates, communication protocols, beamwidth, etc.; and tracking command counter increments against expected values.
|
The [spacecraft] shall implement cryptographic mechanisms to identify and reject wireless transmissions that are deliberate attempts to achieve imitative or manipulative communications deception based on signal parameters.{SV-AV-1,SV-IT-1}{AC-3,AC-20,SA-8(19),SC-8(1),SC-23(3),SC-40(3),SI-4(13),SI-4(24),SI-4(25),SI-10(6)}
|
|
The [spacecraft] shall implement relay and replay-resistant authentication mechanisms for establishing a remote connection.{SV-AC-1,SV-AC-2}{AC-3,IA-2(8),IA-2(9),SA-8(18),SC-8(1),SC-16(1),SC-16(2),SC-23(3),SC-40(4)}
|
|
The [spacecraft] shall maintain the confidentiality and integrity of information during preparation for transmission and during reception.{SV-AC-7}{AC-3,SA-8(19),SC-8,SC-8(1),SC-8(2),SC-16,SC-16(1)}
|
* Preparation for transmission and during reception includes the aggregation, packing, and transformation options performed prior to transmission and the undoing of those operations that occur upon receipt.
|
The [spacecraft] shall not employ a mode of operations where cryptography on the TT&C link can be disabled (i.e., crypto-bypass mode).{SV-AC-1,SV-CF-1,SV-CF-2}{AC-3(10),SA-8(18),SA-8(19),SC-16(2),SC-16(3),SC-40(4)}
|
|
The [spacecraft] shall monitor and collect all onboard cyber-relevant data (from multiple system components), including identification of potential attacks and sufficient information about the attack for subsequent analysis.{SV-DCO-1}{AC-6(9),AC-20,AC-20(1),AU-2,AU-12,IR-4,IR-4(1),RA-10,SI-3,SI-3(10),SI-4,SI-4(1),SI-4(2),SI-4(7),SI-4(24)}
|
The spacecraft will monitor and collect data that provides accountability of activity occurring onboard the spacecraft. Due to resource limitations on the spacecraft, analysis must be performed to determine which data is critical for retention and which can be filtered. Full system coverage of data and actions is desired as an objective; it will likely be impractical due to the resource limitations. “Cyber-relevant data” refers to all data and actions deemed necessary to support accountability and awareness of onboard cyber activities for the mission. This would include data that may indicate abnormal activities, critical configuration parameters, transmissions on onboard networks, command logging, or other such data items. This set of data items should be identified early in the system requirements and design phase. Cyber-relevant data should support the ability to assess whether abnormal events are unintended anomalies or actual cyber threats. Actual cyber threats may rarely or never occur, but non-threat anomalies occur regularly. The ability to filter out cyber threats for non-cyber threats in relevant time would provide a needed capability. Examples could include successful and unsuccessful attempts to access, modify, or delete privileges, security objects, security levels, or categories of information (e.g., classification levels).
|
The [spacecraft] shall generate cyber-relevant audit records containing information that establishes what type of event occurred, when the event occurred, where the event occurred, the source of the event, and the outcome of the event.{SV-DCO-1}{AU-3,AU-3(1),AU-12,IR-4,IR-4(1),RA-10,SI-3,SI-3(10),SI-4(7),SI-4(24)}
|
|
The [spacecraft] shall attribute cyber attacks and identify unauthorized use of the platform by downlinking onboard cyber information to the mission ground station within 3 minutes. {AU-4(1),IR-4,IR-4(1),IR-4(12),IR-4(13),RA-10,SA-8(22),SI-3,SI-3(10),SI-4(5),SI-4(7),SI-4(12),SI-4(24)}
|
|
The [spacecraft] shall alert in the event of the audit/logging processing failures.{AU-5,AU-5(1),AU-5(2),SI-3,SI-4,SI-4(1),SI-4(7),SI-4(12),SI-4(24)}
|
|
The [spacecraft] shall provide an alert immediately to [at a minimum the mission director, administrators, and security officers] when the following failure events occur: [minimally but not limited to: auditing software/hardware errors; failures in the audit capturing mechanisms; and audit storage capacity reaching 95%, 99%, and 100%] of allocated capacity.{SV-DCO-1}{AU-5,AU-5(1),AU-5(2),SI-4,SI-4(1),SI-4(7),SI-4(12),SI-4(24),SI-7(7)}
|
Intent is to have human on the ground be alerted to failures. This can be decomposed to SV to generate telemetry and to Ground to alert.
|
The [spacecraft] shall provide the capability of a cyber “black-box” to capture necessary data for cyber forensics of threat signatures and anomaly resolution when cyber attacks are detected.{SV-DCO-1}{AU-5(5),AU-9(2),AU-9(3),AU-12,IR-4(12),IR-4(13),IR-5(1),SI-3,SI-3(10),SI-4,SI-4(1),SI-4(7),SI-4(24),SI-7(7)}
|
Similar concept of a "black box" on an aircraft where all critical information is stored for post forensic analysis. Black box can be used to record CPU utilization, GNC physical parameters, audit records, memory contents, TT&C data points, etc. The timeframe is dependent upon implementation but needs to meet the intent of the requirement. For example, 30 days may suffice.
|
The [spacecraft] shall provide automated onboard mechanisms that integrate audit review, analysis, and reporting processes to support mission processes for investigation and response to suspicious activities to determine the attack class in the event of a cyber attack.{SV-DCO-1}{AU-6(1),IR-4,IR-4(1),IR-4(12),IR-4(13),PM-16(1),RA-10,SA-8(21),SA-8(22),SC-5(3),SI-3,SI-3(10),SI-4(7),SI-4(24),SI-7(7)}
|
* Identifying the class (e.g., exfiltration, Trojans, etc.), nature, or effect of cyberattack (e.g., exfiltration, subverted control, or mission interruption) is necessary to determine the type of response. The first order of identification may be to determine whether the event is an attack or a non-threat event (anomaly). The objective requirement would be to predict the impact of the detected signature.
* Unexpected conditions can include RF lockups, loss of lock, failure to acquire an expected contact and unexpected reports of acquisition, unusual AGC and ACS control excursions, unforeseen actuator enabling's or actions, thermal stresses, power aberrations, failure to authenticate, software or counter resets, etc. Mitigation might include additional TMONs, more detailed AGC and PLL thresholds to alert operators, auto-capturing state snapshot images in memory when unexpected conditions occur, signal spectra measurements, and expanded default diagnostic telemetry modes to help in identifying and resolving anomalous conditions.
|
The [spacecraft] shall integrate cyber related detection and responses with existing fault management capabilities to ensure tight integration between traditional fault management and cyber intrusion detection and prevention.{SV-DCO-1}{AU-6(4),IR-4,IR-4(1),RA-10,SA-8(21),SA-8(26),SC-3(4),SI-3,SI-3(10),SI-4(7),SI-4(13),SI-4(16),SI-4(24),SI-4(25),SI-7(7),SI-13}
|
The onboard IPS system should be integrated into the existing onboard spacecraft fault management system (FMS) because the FMS has its own fault detection and response system built in. SV corrective behavior is usually limited to automated fault responses and ground commanded recovery actions. Intrusion prevention and response methods will inform resilient cybersecurity design. These methods enable detected threat activity to trigger defensive responses and resilient SV recovery.
|
The [spacecraft] shall incorporate backup sources for navigation and timing.{SV-IT-1}{AU-8(1),SC-45(1),SC-45(2)}
|
|
The [spacecraft] shall have fault-tolerant authoritative time sourcing for the platform's clock.{SV-IT-1}{AU-8(2),SC-45,SC-45(1),SC-45(2),SI-13}
|
* Adopt voting schemes (triple modular redundancy) that include inputs from backup sources. Consider providing a second reference frame against which short-term changes or interferences can be compared.
* Atomic clocks, crystal oscillators and/or GPS receivers are often used as time sources. GPS should not be used as the only source due to spoofing/jamming concerns.
|
The [spacecraft] shall protect information obtained from logging/intrusion-monitoring from unauthorized access, modification, and deletion.{SV-DCO-1}{AU-9,AU-9(3),RA-10,SI-4(7),SI-4(24)}
|
|
The [organization] shall employ automated tools that provide notification to ground operators upon discovering discrepancies during integrity verification.{CM-3(5),CM-6,IR-6,IR-6(2),SA-8(21),SC-51,SI-3,SI-4(7),SI-4(12),SI-4(24),SI-7(2)}
|
|
The [spacecraft] shall provide automatic notification to ground operators upon discovering discrepancies during integrity verification.{SV-IT-2}{CM-3(5),SA-8(21),SI-3,SI-4(7),SI-4(12),SI-4(24),SI-7(2)}
|
|
The [spacecraft], upon detection of a potential integrity violation, shall provide the capability to [audit the event and alert ground operators].{SV-DCO-1}{CM-3(5),SA-8(21),SI-3,SI-4(7),SI-4(12),SI-4(24),SI-7(8)}
|
One example would be for bad commands where the system would reject the command and not increment the Vehicle Command Counter (VCC) and include the information in telemetry.
|
The [spacecraft] shall enter a cyber-safe mode when conditions that threaten the platform are detected, enters a cyber-safe mode of operation with restrictions as defined based on the cyber-safe mode.{SV-AV-5,SV-AV-6,SV-AV-7}{CP-10(6),CP-12,CP-13,IR-4,IR-4(1),IR-4(3),PE-10,RA-10,SA-8(16),SA-8(21),SA-8(24),SI-3,SI-4(7),SI-13,SI-17}
|
|
The [spacecraft] shall fail securely to a secondary device in the event of an operational failure of a primary boundary protection device (i.e., crypto solution).{SV-AC-1,SV-AC-2,SV-CF-1,SV-CF-2}{CP-13,SA-8(19),SA-8(24),SC-7(18),SI-13,SI-13(4)}
|
|
The [organization] shall define the security safeguards that are to be automatically employed when integrity violations are discovered.{SV-IT-2}{CP-2,SA-8(21),SI-3,SI-4(7),SI-4(12),SI-7(5),SI-7(8)}
|
|
The [spacecraft] shall have multiple uplink paths {SV-AV-1}{CP-8,CP-11,SA-8(18),SC-5,SC-47}
|
|
The [spacecraft] shall utilize TRANSEC.{SV-AV-1}{CP-8,RA-5(4),SA-8(18),SA-8(19),SC-8(1),SC-8(4),SC-16,SC-16(1),SC-16(2),SC-16(3),SC-40(4)}
|
Transmission Security (TRANSEC) is used to ensure the availability of transmissions and limit intelligence collection from the transmissions. TRANSEC is secured through burst encoding, frequency hopping, or spread spectrum methods where the required pseudorandom sequence generation is controlled by a cryptographic algorithm and key. Such keys are known as transmission security keys (TSK). The objectives of transmission security are low probability of interception (LPI), low probability of detection (LPD), and antijam which means resistance to jamming (EPM or ECCM).
|
The [spacecraft] shall maintain the ability to establish communication with the spacecraft in the event of an anomaly to the primary receive path.{SV-AV-1,SV-IT-1}{CP-8,SA-8(18),SC-47}
|
Receiver communication can be established after an anomaly with such capabilities as multiple receive apertures, redundant paths within receivers, redundant receivers, omni apertures, fallback default command modes, and lower bit rates for contingency commanding, as examples
|
The [spacecraft] shall implement cryptography for the indicated uses using the indicated protocols, algorithms, and mechanisms, in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, and standards: [NSA- certified or approved cryptography for protection of classified information, FIPS-validated cryptography for the provision of hashing].{SV-AC-1,SV-AC-2,SV-CF-1,SV-CF-2,SV-AC-3}{IA-7,SC-13}
|
|
The [spacecraft] shall be able to locate the onboard origin of a cyber attack and alert ground operators within 3 minutes.{SV-DCO-1}{IR-4,IR-4(1),IR-4(12),IR-4(13),RA-10,SA-8(22),SI-3,SI-3(10),SI-4,SI-4(1),SI-4(7),SI-4(12),SI-4(16),SI-4(24)}
|
The origin of any attack onboard the vehicle should be identifiable to support mitigation. At the very least, attacks from critical element (safety-critical or higher-attack surface) components should be locatable quickly so that timely action can occur.
|
The [spacecraft] shall detect and deny unauthorized outgoing communications posing a threat to the spacecraft.{SV-DCO-1}{IR-4,IR-4(1),RA-5(4),RA-10,SC-7(9),SC-7(10),SI-4,SI-4(1),SI-4(4),SI-4(7),SI-4(11),SI-4(13),SI-4(24),SI-4(25)}
|
|
The [spacecraft] shall recover to a known cyber-safe state when an anomaly is detected.{IR-4,IR-4(1),SA-8(16),SA-8(19),SA-8(21),SA-8(24),SI-3,SI-4(7),SI-10(6),SI-13,SI-17}
|
|
The [spacecraft] shall detect and recover from detected memory errors or transitions to a known cyber-safe state.{IR-4,IR-4(1),SA-8(16),SA-8(24),SI-3,SI-4(7),SI-10(6),SI-13,SI-17}
|
|
The [spacecraft] shall select and execute safe countermeasures against cyber attacks prior to entering cyber-safe mode.{SV-DCO-1}{IR-4,RA-10,SA-8(21),SA-8(24),SI-4(7),SI-17}
|
These countermeasures are a ready supply of options to triage against the specific types of attack and mission priorities. Minimally, the response should ensure vehicle safety and continued operations. Ideally, the goal is to trap the threat, convince the threat that it is successful, and trace and track the attacker exquisitely—with or without ground aiding. This would support successful attribution and evolving countermeasures to mitigate the threat in the future. “Safe countermeasures” are those that are compatible with the system’s fault management system to avoid unintended effects or fratricide on the system." These countermeasures are likely executed prior to entering into a cyber-safe mode.
|
The [spacecraft] shall have on-board intrusion detection/prevention system that monitors the mission critical components or systems.{SV-AC-1,SV-AC-2,SV-MA-4}{RA-10,SC-7,SI-3,SI-3(8),SI-4,SI-4(1),SI-4(7),SI-4(13),SI-4(24),SI-4(25),SI-10(6)}
|
The mission critical components or systems could be GNC/Attitude Control, C&DH, TT&C, Fault Management.
|
The [organization] shall define acceptable secure communication protocols available for use within the mission in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, and standards.{SV-AC-7}{SA-4(9)}
|
The secure communication protocol should include "strong" authenticated encryption characteristics.
|
The [spacecraft] shall only use [organization]-defined communication protocols within the mission.{SV-AC-7}{SA-4(9)}
|
|
The [spacecraft] shall implement cryptographic mechanisms that achieve adequate protection against the effects of intentional electromagnetic interference.{SV-AV-1,SV-IT-1}{SA-8(19),SC-8(1),SC-40,SC-40(1)}
|
|
The [organization] shall use NIST Approved for symmetric key management for Unclassified systems; NSA Approved or stronger symmetric key management technology for Classified systems.{SV-AC-1,SV-AC-3}{SC-12,SC-12(1),SC-12(2)}
|
FIPS-complaint technology used by the Program shall include (but is not limited to) cryptographic key generation algorithms or key distribution techniques that are either a) specified in a FIPS, or b) adopted in a FIPS and specified either in an appendix to the FIPS or in a document referenced by the FIPS.
NSA-approved technology used for symmetric key management by the Program shall include (but is not limited to) NSA-approved cryptographic algorithms, cryptographic key generation algorithms or key distribution techniques, authentication techniques, or evaluation criteria.
|
The [organization] shall use NSA approved key management technology and processes.NSA-approved technology used for asymmetric key management by The [organization] shall include (but is not limited to) NSA-approved cryptographic algorithms, cryptographic key generation algorithms or key distribution techniques, authentication techniques, or evaluation criteria.{SV-AC-1,SV-AC-3}{SC-12,SC-12(1),SC-12(3)}
|
|
The [spacecraft] shall produce, control, and distribute asymmetric cryptographic keys using [organization]-defined asymmetric key management processes.{SV-AC-1,SV-AC-3}{SC-12,SC-12(1),SC-12(3)}
|
In most cased the Program will leverage NSA-approved key management technology and processes.
|
The [spacecraft] shall internally monitor GPS performance so that changes or interruptions in the navigation or timing are flagged.{SV-IT-1}{SC-45(1)}
|
|
The [spacecraft] shall protect external and internal communications from jamming and spoofing attempts.{SV-AV-1,SV-IT-1}{SC-5,SC-40,SC-40(1)}
|
Can be aided via the Crosslink, S-Band, and L-Band subsystems
|
The [spacecraft] shall monitor [Program defined telemetry points] for malicious commanding attempts.{SV-AC-1,SV-AC-2}{SC-7,AU-3(1),AC-17(1)}
|
Source from AEROSPACE REPORT NO. TOR-2019-02178
Vehicle Command Counter (VCC) - Counts received valid commands
Rejected Command Counter - Counts received invalid commands
Command Receiver On/Off Mode - Indicates times command receiver is accepting commands
Command Receivers Received Signal Strength - Analog measure of the amount of received RF energy at the receive frequency
Command Receiver Lock Modes - Indicates when command receiver has achieved lock on command signal
Telemetry Downlink Modes - Indicates when the satellite’s telemetry was transmitting
Cryptographic Modes - Indicates the operating modes of the various encrypted links
Received Commands - Log of all commands received and executed by the satellite
System Clock - Master onboard clock
GPS Ephemeris - Indicates satellite location derived from GPS Signals
|
The [spacecraft] shall protect the confidentiality and integrity of all transmitted information.{SV-IT-2,SV-AC-7}{SC-8}
|
* The intent as written is for all transmitted traffic to be protected. This includes internal to internal communications and especially outside of the boundary.
|
The [spacecraft] shall implement cryptographic mechanisms to prevent unauthorized disclosure of, and detect changes to, information during transmission unless otherwise protected by alternative physical safeguards.{SV-AC-7}{SC-8(1),SI-7(6)}
|
|
The [spacecraft] shall implement cryptographic mechanisms to protect message externals unless otherwise protected by alternative physical safeguards.{SV-AC-7}{SC-8(3)}
|
|